
A Generalized Framework for Building Scalable
Load Balancing Architectures in the Cloud

Illa Pavan Kumar 1, Subrahmanyam Kodukula 2
1 M.Tech, Department of CSE, K L University.

2 Professor, Department of CSE, K L University.

Abstract— Load Balancing in cloud computing is dissimilar from
conventional load balancing techniques, because of the limitations
in conventional load balancing techniques if they are deployed in
the cloud; hence they are unsuitable for the cloud environment.
Since the cloud is designed to provide scalable infrastructure, it is
difficult to build a scalable architecture in order to take the
advantage of scalable infrastructure, because of several issues that
differentiate cloud from traditional organizational infrastructure
and we can’t leverage all that scalability in infrastructure if our
architecture is not scalable, both have to work together. In this
paper we discuss those issues and limitations of conventional load
balancing techniques if deployed in cloud, importance of building
scalable architecture for cloud by exploring scalability solutions
provided by cloud vendors. Finally, we propose a generalized
framework for building scalable load balancing architecture for
cloud environment.
Keywords— Cloud- computing, Load balancing, scalable cloud-
architecture.

1. INTRODUCTION

It has become difficult for most of the IT industries and
business organizations to buy computing infrastructure (e.g.,
computing servers, storage or network) due to the tremendous
increase in the cost and maintaining such infrastructure,
deploying and running business applications on their own
becomes an overhead. In order to break all these overheads,
organizations are migrating to cloud computing.

1.1. Cloud Computing

Cloud computing is a model that allows us to access software,
servers and storage resources over the internet, in a self-service
manner. Instead of having to buy, install, maintain and manage
these resources on our own computer, we can access and use
them through a web browser. Instead laying out capital to buy
hardware, software, we rent what we need, usually on a
subscription basis. The NIST (National Institute of Standards
and Technology) Definition [1] of cloud computing is “Cloud
computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider
interaction”. It provides pay-per-use capabilities. As a user we
see only the self-service interface to the computing resources we
need. All these resources are maintained by cloud providers at
some geographic location. Behind the scenes cloud computing
providers have to do a lot of work to manage the entire
infrastructure, technology, people that make this possible. To
provide services easily, flexibly and profitably to thousands or
even millions of user’s, they invest heavily in hardware,
virtualization techniques, networking infrastructure and
automation capabilities. There are thousands of cloud providers
and have solutions out. Among them Amazon web services
(AWS) and Rackspace are the top most cloud computing service
providers.

1.2. Load balancing in the cloud

Main goal of load balancing technique is to achieve maximum
throughput with minimum response time [2]. Incoming traffic
will be distributed among different servers. Client-server
communication must take place without major delay. This delay
will lead to the customer dissatisfaction.

Load balancing in the cloud differs from classical thinking on
load-balancing architecture and Implementation by using
commodity servers to perform the load balancing. It has its own
set of challenges like scalability and changes the economics of
computing. An infrastructure cloud, such as Amazon's EC2/S3
services [3], promises to fundamentally change the economics
of computing. First, it provides a practically unlimited
infrastructure capacity (e.g., computing servers, storage or
network) on demand. Instead of grossly over-provisioning
upfront due to uncertain demands, users can elastically
provision their infrastructure resources from the provider's pool
only when needed.

Second, the pay-per-use model allows users to pay for the
actual consumption instead of for the peak capacity. Third, a
cloud infrastructure is much larger than most enterprise data
centers. The economy of scale, both in terms of hardware
procurement and infrastructure management and maintenance,
helps to drive down the infrastructure cost further.

Illa Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3015 - 3021

3015

These characteristics make cloud an attractive infrastructure
solution especially for web applications due to their variable
loads. Because web applications could have a dramatic
difference between their peak load and their normal load, a
traditional infrastructure is not suitable for them. The common
practice of organizations it to provision a fixed capacity. This
practice would either result in dissatisfied customers or waste of
capital investment. Using the elastic provisioning capability of a
cloud, a web application can ideally provision its infrastructure
tracking the load in real time and pay only for the capacity
needed to serve the real application demand.

Since the cloud is designed to provide large- scalable
infrastructure, generally we might have thought that an
application can scale up unlimitedly and automatically when
demand increases. But when it comes to reality the performance
study of existing cloud components [4] shows that scaling an
application in cloud is more difficult, because of the several
issues that differentiate cloud from traditional organization
infrastructure.

First, in traditional organization, application owners have the
freedom to customize their infrastructure for optimal results.
When it comes to cloud, a cloud infrastructure is owned and
maintained by the cloud providers. Hence they offer a limited
set of components. For example Amazon EC2 [2] only offers
five types of EC2 instances (virtual servers) and application
owners cannot customize the specification of them.

Second, again due to the reason that the cloud is maintained
by cloud providers, the network bandwidth and computational
power of Virtual Machines (VM) of cloud is less than
commercial web servers. For example performance study on
Amazon VMs [4] shows that they are capable of at most
transmitting at roughly 800Mbps, whereas commercial web
servers routinely have several network interface cards, each
capable of at least 1Gbps.

Third, unlike in traditional organization, application owners
have little or no control of the underlying cloud infrastructure.
For example, for security reasons, Amazon EC2 disabled many
networking layer features, such as ARP, promiscuous mode, IP
spoofing, and IP multicast. Application owners have no ability
to change these infrastructure features. Many performance
optimization techniques rely on the infrastructure choice and
control. For example, to scale a web application, application
owners either ask for a hardware load balancer or ask for the
ability to assign the same IP address to all web servers to
achieve load balancing. Unfortunately, neither option is
available in Amazon EC2.

Last, commodity machines are likely to fail more frequently.
Any architecture design based on cloud must handle machine
failures quickly, ideally in a few milli-seconds or faster, in order
not to frequently disrupt service.

Because of these characteristics, cloud-hosted web applications
tend to run on a cluster with many standard commodity web
servers, thus requiring a scalable load balancing architecture.

In next section, we show the usual load balancing techniques.

2. CONVENTIONAL LOAD BALANCING

There are several existing load balancing techniques to
achieve scalability in an owned infrastructure. We will study
them here and point how they restrict the scalability if deployed
in cloud.

2.1 Load Balancer

There are two types of load balancers in existence.

1. Hardware load balancer
2. Software load balancer

A regular way to scale web applications is by using hardware
load balancer [5]. The fundamental working rule is that network
traffic is sent to a common IP in many cases called a virtual IP
(VIP). This VIP is an address that it attached to the load
balancer. Once the load balancer receives a request on this VIP
it will need to make a decision on where to send it. This decision
is usually made by a load balancing algorithm. The client
request is then sent to the right server and the server will
generate a response. Depending on the type of device, the
response will be sent either back to the load balancer, in the case
of a Layer 7 device, or more naturally with a layer 4 device
straight back to the customer. The hardware load balancer is
intended to handle high level of load, so it can simply scale.

However, a hardware-based load balancer uses application
specific hardware-based components, thus it is naturally
expensive. Because of cloud’s commodity business model, a
hardware load balancer is rarely offered by cloud providers as a
service. As an alternative, one has to use a software load
balancer running on a generic server.

A software load balancer [6, 7] is not scalable solution. Since
it is run on a generic server, the scalability is generally restricted
by the CPU and network bandwidth capacity of the generic
server. The generic server’s capability is much smaller than that
of hardware load balancer. The performance study [4] existing
cloud components shows that Amazon EC2 instance can handle
at most 400Mbps combined incoming and outgoing traffic.
Hence it is not suitable for cloud environment.

2.2 DNS Load Balancing

Another existing technique is DNS load balancing [8]. When
a user attempts to access a particular domain via a text-based
URL address, that domain request needs to be resolute into an IP
address that a local DNS server can interpret. DNS load
balancing performs this essential function, translating readable

Illa Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3015 - 3021

3016

text domain names into IP addresses and afterward redirecting
requests to appropriate servers. If local DNS server does not
contain the IP address information, it contacts other DNS
servers that have the information, which will be the global DNS
server. The global DNS server can handout different IP
addresses to different local DNS servers so that the load could
be scattered among the servers sitting at each IP address.DNS
also specifies a validity period, known as Time-To-Live (TTL)
for caching the IP address. After the expiration of TTL, that IP
address will be assigned to other local DNS server.

DNS load balancing has its drawbacks- load balancing
granularity and adaptiveness [9] those are not specific to the
cloud. Since a local DNS server caches the IP address
information, all browsers contacting the same DNS server
would get the same IP address. Moreover the DNS server could
be responsible for a large number of hosts; the load could not be
effectively smoothed out.

Second, the local DNS server caches IP address for a set
period of time (TTL), e.g., for some days. Until the cache
expires, the local DNS server guides requests from browsers to
the same web server. When traffic fluctuates at a time scale
much smaller than days, tweaking DNS server settings has little
effect. Traditionally, this drawback has not been as marked
because the number of back-end web servers and their IP
addresses are static anyway. However, it seriously affects the
scalability of a cloud-based architecture. A cloud-based
architecture elastically changes the number of web servers
tracking the volume of traffic in minute’s granularity. Days of
DNS caching significantly reduces this elasticity.

More specifically, even though the architecture increases the
number of web servers to serve the peak load, IP addresses for
new web servers will not be propagated to DNS servers that
already have a cached IP address. Therefore, the requests
relying on those DNS servers will be kept and being sent to the
old web servers which overloads them while the new web
servers remain idle. In addition, when a web server fails, the
DNS entry could not be immediately updated. While the DNS
changes propagate, users are not able to access the service even
though there are other live web servers. Hence it is ill-suited for
the cloud.

2.3 LAYER 2 Optimization

Layer 2 refers to the Data Link layer of the Open Systems
Interconnection (OSI) model. The Data Link layer is concerned
with moving data across the physical links in the network. In a
network, the switch is a device that redirects data messages at
the layer 2 level, using the destination Media Access Control
(MAC) address to determine where to direct the message. We
can apply layer 2 optimization techniques to build a scalable
web architecture that does not impose all the limitations
discussed above.

There are different variations in layer 2 optimization. One of
the variations is referred as direct server return [10]. Direct
Server Return is a load balancing configuration which facilitates
responses to server requests being delivered directly to the
network rather than being routed back through the load balancer.

Another variant is TCP handoff [11]. Here we have a sender
at front-end. Client request first establishes a TCP bond with
this sender. Before any data transfer occurs the sender sends the
TCP state to one of the servers at back-end.

Unfortunately, layer 2 optimization leads to security issues.
One can capture all packets targeting for a host by inducting
another host with the same IP address. Because of these issues,
Amazon EC2 disables all layer 2 optimization techniques.
Hence it is out of race.

2.4 Client Load Balancing

In client load balancing, client browser decides on the
mechanism of request routing. One technique is NetScape’s
approach [8]. When the user accesses the Netscape home page
(located at the URL www.netscape.com), Navigator selects a
random number between 1 and the Number of servers and
directs the user request to that corresponding server. This
technique is generally not applicable, because this architecture is
not scalable unless client browser is re-installed. Hence it is not
suitable for the cloud.

Other approach is to use Smart Client [12]. It aims at
migrates some server functionality to the client machine, in
contrast with the traditional approach in which the Web client is
not involved. The Java Applet executed at the client side will
decide the request routing. Unfortunately, it has several
weaknesses. First, Java Applets need the Java Virtual Machine,
which is not available by default on most browsers. This is
especially true in the mobile environment. Second, if the user
accidentally agrees, a Java Applet could have full access to the
client machine, leaving open a big security weakness.

Third, many organizations only allow administrators to install
software, so users cannot view applets by default. Fourth, a Java
Applet is an application; the HTML page routing structure is
lost if navigating within the applet. Lastly, Smart Client still
relies on a central server to download the Java Applet and the
server list, which still presents a single point of failure and
scalability jam.

In next section we discuss, best practices given by leading
cloud providers to build scalable architectures for cloud.

3. BUILIDING SCALABLE ARCHITECTURES

Since the cloud is designed to provide scalable infrastructure,
an ideal scalable load balancing architecture is the one which
can handle those entire infrastructure. In general it is difficult to
build such architecture. We cannot pull all that scalability in

Illa Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3015 - 3021

3017

infrastructure if our architecture is not scalable. Both have to
work as one. An ideal scalable architecture should have the
following characteristics.

 Growing resources results in a proportional growth in
performance

 A scalable service must be able to handle heterogeneity
 A scalable service is operationally efficient
 A scalable service is durable
 A scalable service should become more cost effective

when it grows.

3.1 Amazon Guidelines for Cloud Architects

AWS providing best practices [13] to build such architecture.
We discuss some of those cloud best practices here.

One such practice is to Design for failure, in this we assume
that things will fail. We always design, implement and deploy
for automatic recovery from failure. If we realize that the things
will fail over time and add in that thinking into our architecture,
build mechanisms to handle that failure before disaster strikes to
deal with a scalable infrastructure, we will end up creating a
fault-tolerant architecture that is well suited for the cloud. This
practice is all about the effective utilization and configuring of
cloud components like Amazon RDS, Amazon EC2, and
Amazon EBS, so that we can build a scalable architecture.

Another practice is, decoupling our components. The main
goal of this practice is to build components that do not have
tight dependencies on each other, so that if one component were
to fail, or not respond, or slow to respond for some reason, the
other component will continue the work, so that we can handle
the failure. Hence it is all about isolating the various layers and
components of our application. One can build such a system
with Amazon SQS to isolate components. GrepTheWeb
Architecture [14] uses heavy number of Amazon SQS queues.
In GrepTheWeb, if lots of requests suddenly reach the server or
the processing of regular expressions takes a longer time than
the slow response rate of a component, the Amazon SQS queues
buffer the requests in a robust manner so that those delays do
not affect other components.

The cloud brings a new conception of elasticity in our
applications. By implementing elasticity one can build a
scalable architecture. To implement “Elasticity”, one has to first
automate the deployment process and simplify the design and
build process. This will ensure that the system can scale without
any human involvement. This will result in immediate cost
profit as the overall utilization is increased by ensuring your
resources are closely associated with demand rather than
potentially running servers that are under-utilized. We can
automate the deployment process by utilizing Amazon S3,
Amazon EC2, and Amazon EBS.

Other practice is parallelization. Whether it is requesting data
from the cloud, storing data to the cloud, or processing data in
the cloud, we need to internalize the concept of parallelization
when designing architectures in the cloud. It is suitable to not
only implement parallelization wherever possible but also
automate it because the cloud allows you to create a repeatable
process very simply. This can be achieved by Multi-threading
our Amazon S3 and Amazon Simple DB requests. We can build
ideal architecture by combining elasticity and parallelization
practices.

In order to deal with internet latencies, it’s a good practice to
keep our data as close as possible to compute or processing
elements, i.e. keep dynamic data closer to the compute and static
data closer to the end-user. With this practice we can reduce
internet latencies in our architecture. This is all about ideal
utilization of Amazon S3 component.

Now we analyze a scalable web server farm [9] developed by
effective utilization of storage component Amazon S3 for web
applications. It comes under client side load balancing
technique. Since Amazon S3 supports only static web content,
the processing of dynamic content is done by server side
scripting on Amazon EC2.For each dynamic page an anchor
page is created with the information of list of web servers and
their load information, load balancing logic. All these anchor
pages are hosted in S3 to achieve scalability. It is a system that
delivers the java script as well as the static content becomes a
single point of contact for all clients. In this architecture,
scalability is achieved by efficient utilization of Amazon S3 and
Amazon EC2. We can use reference architectures [15] offered
by AWS while building a scalable architecture.

3.2 Rightscale cloud management service

Until now in our discussion, the end-users have no control on
underling cloud infrastructures, i.e. we cannot customize the
specifications of existing cloud components. RIGHTSCALE
[16] is a cloud management service provider, allowing end-users
to have a control on our cloud infrastructures. They have the
software, tools that allow us to control underlying cloud
infrastructure. RIGHTSCALE is having the deal with leading
cloud providers like Amazon web services, Rackspace etc.

For this RIGHTSCALE is providing a dashboard, which is a
web-based portal that we use to control existing cloud
components. For example if we are working with AWS
components, if we need a modification to those components, we
use RIGHTSCALE dashboard to specify those modifications.
They templatize and automate many of those modifications, to
make the whole process easier than doing it natively on AWS's
console. If we require other than that templates, then we can
modify one of their templates, or build one from scratch similar
to how we would bundle an image directly on AWS. After
specifying the modifications, RIGHTSCALE Application

Illa Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3015 - 3021

3018

Programming Interface (API) which is abstracted away from
AWS, interacts with their API. If we launch a server through
dashboard, RIGHTSCALE API makes a call with AWS to
launch that server instance.

Moreover RIGHTSCALE is providing tools, tips and
techniques [17] for building scalable load balancing architecture
in the cloud.

Now we discuss a case study of “Woot.com” [18], which is a
well known online e-commerce site, famous for creating the
"one day one item sale" business model. Woot.com's main
website offers one discounted product each day, often a piece of
computer hardware or an electronic gadget.Woot.com turned to
the cloud because of the attractive pay-as-you-go, resources on-
demand model. This model provided Woot.com a solution for
handling massive traffic spikes without the up-front capital
investment. Woot.com chose Amazon Web Services (AWS)
cloud as its base cloud infrastructure. Periodically Woot.com
announces a "Woot-Off", a short term frenzied alteration of the
product posting procedure. In Woot-Off mode, a new product is
launched immediately after the sellout of the previous deal.
They configured aiCache load balancer offered by AWS for use
during woot-off’s through RIGHTSCALE dashboard. Using the

RIGHTSCALE platform, Woot.com deployed instances on the
Amazon Web Services Elastic Compute Cloud (EC2) and
directed all web traffic to the aiCache accelerators.

During their Woot-off traffic events, Woot.com harnesses the
power of RightScale's monitoring, and now uses their load
balancer to move all Woot-off traffic from their datacenter to the
aiCache instances in the cloud. Once complete, they use the
Rightscale dashboard to scale back the instances on Amazon
EC2 to reduce costs. Hence Woot.com achieved scalability. This
is all about using Amazon EC2 according to user needs. We can
use the reference architectures [19] made by RIGHTSCALE
while building a scalable load balancing architecture.

From section 3 we conclude that building a scalable load
balancing architecture for a cloud is all about ideal grouping of
existing cloud components like Amazon EC2/S3, Amazon SQS
etc. if this grouping is associated with appropriate cloud
management like RIGHTSCALE we can achieve scalable
architecture for the cloud. Now from above study, we propose a
generalized framework for building a scalable load balancing
architectures with Amazon cloud components under the
management of RIGHTSCALE cloud platform.

Fig 1: A Generalized framework for Scalable Architectures

Illa Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3015 - 3021

3019

4. GENERALIZED FRAMEWORK

Since most of the organizations moving their data centre to
Amazon Web Services [2] cloud, we proposed the framework
shown in Fig 1. for building scalable load balancing architecture
with Amazon computing component like Amazon EC2[21] and
storage options like Amazon /S3/EBS/SimpleDB/RDS/SQS[20]
according to the cloud best practices provided by AWS[13].
This framework is a real or conceptual structure intended to
serve as a support or guide for the building of scalable
architectures. Now we explain the components of the framework
and how they lead to scalability of our application, My
Application in the Fig 1 with the best usage scenario.

Amazon EC2: Amazon Elastic Compute Cloud (Amazon
EC2) is a web service that provides resizable compute capacity
in the cloud. You can bundle the operating system, application
software and associated configuration settings into an Amazon
Machine Image (AMI), through which we launch our instances
or we can launch multiple instances. With Amazon EC2 we can
build applications that start small but can scale up rapidly as
demand increases. However, for the efficient usage of Amazon
EC2, it is important to architect your application correctly,
otherwise we cannot rebuild after the occurrence of a failure. To
ensure that our application scales with increasing load, you must
ensure that it has no bottlenecks or single points of failure, and
that it can continue to run even when one or more components
fail. It is associated with feature like auto scaling; Load
Balancing (LB among App servers) etc.It is an Amazon cloud
computing platform.

Amazon S3: Amazon S3 is a highly scalable, robust and
available distributed object store designed for mission-critical
and primary data storage with an easy to use web service
interface. We can store unlimited number of objects in Amazon
S3 bucket, hence it is highly scalable. Common use for Amazon
S3 is storage of static web content. This content can be delivered
directly out of Amazon S3 via a web server, since each object in
Amazon S3 has exclusive HTTP URL address, or delivered
through Amazon Cloud Front. Multithreading the requests to
Amazon S3 is the best practice to achieve scalability.

Amazon EBS: Amazon Elastic Block Storage (EBS) is meant
for data that changes frequently and requires durable
persistence. EBS provides persistent virtual block mode storage
for Amazon EC2virtual servers, so that we can use it just as a
hard drive on a physical server. Amazon EBS is particularly
well-suited for use as the primary storage for a file system,
database or for any applications that require fine granular
updates and access to raw, unformatted block-level storage. In
order to maximize both durability and availability of their EBS
data, users should snapshot their EBS volumes frequently and
store those images in AmazonS3.

Amazon SQS: Amazon Simple Queue Service (Amazon SQS)
provides a reliable, highly scalable, hosted message queuing
service for temporary storage and delivery of short(up to 64kB)
text-based data messages. An Amazon SQS queue is a
temporary data repository for messages that are waiting for
processing. While Amazon SQS and other message queuing
services are usually thought of as an asynchronous
communication protocols, Amazon SQS can also be viewed as a
store for providing temporary but durable data storage for many
classes of applications.

Use of Amazon SQS as temporary storage can minimize the
use of other storage mechanisms, such as temporary disk files. It
is the main component to build scalable architectures. It enables
us to build scalable EC2 applications by providing the features
like loose coupling and pipe lining. It isolates the failure of a
component from the rest of the system. The failure will be
transparent to the end user. We can implement a high-
availability solution with Amazon SQS, because it makes it
possible to drop in a replacement server without impacting the
rest of the system. A single Amazon SQS queue can handle
multiple server instances simultaneously. So that load can be
balanced. Some of the processing operations may take longer
time than the rest; we have to implement such long-running
operations in a separate, dedicating server. This can be
implemented with minimal interruption to the rest of the system
using Amazon SQS, by pipelining.

Amazon SimpleDB: This storage alternative is well-suited for
situations where we have structured, fine-grained data that we
need to persist and then query with high availability and
durability. Many organizations use SimpleDB as part of a larger
cloud-based storage architecture. A common pattern is to use
SimpleDB to keep track of metadata about information that is
stored in other AWS offerings, SimpleDB is a highly available,
scalable, and flexible non relational data store that offloads
much of the work of database administration and associated
systems management.

Amazon RDS: Amazon Relational Database Service (RDS) is
a fully functional, MySQL relational database provided as a
managed, cloud-based service. If our application requires
relational storage, but we want to reduce the time we spend on
database management, Amazon RDS automates common
administrative tasks to reduce the complexity and total cost of
ownership, allowing us to spend more time on application
development. Amazon RDS is a great choice for any application
that relies on MySQL as its information repository and you want
to take advantage of a highly scalable, low-maintenance, cost-
effective, cloud-based database without the need to make any
code changes.

Illa Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3015 - 3021

3020

Amazon CloudFront: Amazon CloudFront is a web service
for content delivery. It integrates with other components to give
developers an easy way to distribute content end users with low
latency and high data transfer speeds.

Rightscale Platform: With this cloud management service we
can select the underlying cloud, chose the software, control the
entire infrastructure through RIGHTSCALE dashboard. It is
optional to use this platform if user does not need any
modifications to cloud components.

Most of the organizations are developing their own
architectures according to their needs. It is not necessary to use
all the cloud components, organizations will selects the
components that suits with their usage scenarios. The main thing
is the grouping the selected components ideally Hence there is
no standard architecture for load balancing in the cloud, it
depends on organization needs, they may use the reference
architectures offered by the cloud provider or they modify the
components through a cloud management service.

5. CONCLUSION

This paper has provided the importance of building scalable
architectures in the cloud. By following the best practices of
AWS - like designing for failure, decoupling the application
components, understanding and implementing elasticity,
combining it with parallelization, we can understand the design
considerations required for building highly scalable cloud
applications and the proposed framework is intended to serve as
a support or guide for building scalable load balancing
architectures.

ACKNOWLEDGEMENTS

We like to express our gratitude to all those who gave us the
possibility to carry out the paper. We would like to thank
Mr.K.Satyanarayana, chancellor of K.L.University, Dr.K.Raja
Sekhara Rao, Dean, and K.L.University for stimulating
suggestions and encouragement. We have further more to thank
Prof.S.Venkateswarlu, Dr.K.Subrahmanyam, who encouraged
us to go ahead with this paper.

REFERENCES

[1]. Peter Mell, Timothy Grance, “National Institute of
Standards and Technology Special Publication 800-145:
The NIST Definition of cloud computing”, September
2011.

[2]. Shimon ski. R, “Windows 2000 & Windows Server 2003
Clustering and Load Balancing Emeryville,” McGraw-
Hill Professional Publishing, CA, USA (2003), p 2, 2003.

[3]. Amazon Web Services, “Amazon Web Services (AWS)”,
http://aws.amazon.com.

[4]. H. Liu and S. Wee. Web Server Farm in the Cloud:
"Performance Evaluation and Dynamic Architecture”, In
Proc. of the 1st International Conference on Cloud
Computing (CloudCom 2009), Dec 2009.

[5]. F5 Networks,"F5 Networks”, http://www.f5.com.
[6]. HaProxy, “HaProxy load balancer”,

http://haproxy.1wt.eu/.
[7]. Nginx,"Nginx web server and load balancer",

http://nginx.net/.
[8]. Valeria Cardellini, Michele Colajanni, “Dynamic Load

Balancing on web-server systems” IEEE Internet
Computing, vol. 3, no. 3, pp. 28-39, May-June 1999.

[9]. H. Liu and S. Wee, "Client-Side Load Balancer Using
Cloud", SAC’10 March 22-26,ACM 2010, Sierra,
Switzerland.

[10]. L.Cherkasova, "FLEX: Load Balancing and Management
Strategy for Scalable Web Hosting Service", IEEE
Symposium on Computers and Communications, 0:8,
2000.

[11]. G. Hunt, E. Nahum, and J. Tracey, "Enabling content-
based load distribution for scalable Services”, Technical
report, 1997.

[12]. C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T.
Anderson, and D. Culler," Using Smart Clients to Build
Scalable Services, In Proc. USENIX 1997Annual
Technical Conference, Jan 1997.

[13]. J.Varia, “Architecting for the cloud: Best practices”.
http://d36cz9buwru1tt.cloudfront.net/AWS_Cloud_Best_
Practices.pdf.

[14]. J.Varia, "Cloud Architectures".
http://jineshvaria.s3.amazonaws.com/public/cloudarchitec
tures-varia.pdf,2007-07-01

[15]. AWS. http://aws.amazon.com/architecture/.
[16]. RightScale Cloud Management.

http://www.rightscale.com/.
[17]. Brian Adler,” Load Balancing in the Cloud: Tools, Tips,

and techniques”.
 http://www.rightscale.com/info_center/white-

papers/load-balancing-in-the-cloud.php
[18]. RightScale Cloud Management.

http://www.rightscale.com/customers/woot-scales-
usingrightscale-and-aicache.php.

[19]. RightScale Cloud Management.
 http://support.rightscale.com/12Guides/EC2_Best_Practic

es/EC2_Site_Architecture_Diagrams.
http://support.rightscale.com/12Guides/EC2_Best_Practic
es/EC2_Site_Architecture_Diagrams.

[20]. Joseph Baron, Amazon Web Services Robert Schneider,
Think88."Storage Options in theAWS Cloud”.
http://d36cz9buwru1tt.cloudfront.net/AWS_Storage_Opti
ons.pdf.

 [21]. AWS.http://aws.amazon.com/ec2/

Illa Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3015 - 3021

3021

